Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong
 prapun@siit.tu.ac.th
 1 Probability and You

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Everything we do, everything that happens around us, obeys the laws of probability.

We can no more escape them than we can escape gravity... "Probability," a philosopher (Bishop Butler) once said, "is the very guide of life."

We are all gamblers who go through life making countless bets on the outcome of countless actions.

Life is random

In 2005, this statement (which is true)

Life is random

Life is random

Life is random.

iPod shufite
Life is random.

Applications of Probability Theory

- The subject of probability can be traced back to the 17 th century when it arose out of the study of gambling games.
- The range of applications extends beyond games into business decisions, insurance, law, medical tests, and the social sciences.
- The stock market, "the largest casino in the world," cannot do without it.
- The telephone network, call centers, and airline companies with their randomly fluctuating loads could not have been economically designed without probability theory.

My Color Scheme for Highlighting

New Term

Definition
Definition 2.13. A singleton is a set with exactly one element.

- Assumptions: When the Important/Useful Properties/Results Assumption or goal ng (1
- Finite Ω : The numk

$$
\mathbb{E}\left[\sum_{k=1}^{n} c_{k} g_{k}(X)\right]=\sum_{k=1}^{n} c_{k} \mathbb{E}\left[g_{k}(X)\right] .
$$

Example
Example 1.1. Some exampıes rrom aaily life calculations are involved are the determination ums, the introduction of new medications on t polls, weather forecasts, and DNA evidence ir

FHSS Example: Bluetooth

- The band at 2.4 GHz is divided into 79 channels.
- A Bluetooth device, hops frequency at a rate of 1600 hops per second, randomly selecting a channel of 1 MHz to operate.

Pokémon GO

- When you throw your Poké Ball to catch a Pokémon, there is this probability of catching (catch rate) which depends on the type of ball that you use, how you throw the Poke Ball, and whether you use some special berry.
- Each time a Pokemon escapes from a ball, it has a chance of fleeing (flee rate) the encounter in a puff of smoke.

Pokémon GO

"The Perfect Thing"

What is this?

＂The Perfect Thing＂

Click to LOOK INSIDE！

Share your own customer images
Search inside this book

The Perfect Thing：How the iPod Shuffles Commerce，Culture，and Coolness ［Hardcover］
Steven Levy $⿴ 囗 十$
 \qquad

Available from these sellers．

27 new from $\$ 0.95 \quad \mathbf{9 6}$ used from $\$ 0.01$

Formats	Amazon Price	New from	Used from
Kindle Edition	-	$\$ 10.99$	-
Hardcover，Bargain Price Hardcover，October 24，2006	$\$ 10.00$	$\$ 10.00$	$\$ 3.94$
Paperback	$\$-$	$\$ 0.95$	$\$ 0.01$
Audible Audio Edition，Abridged	$\$ 17.95$	or Free with Audible	
30－day free trial			

"The Perfect Thing"

"To me the signature aspect of the iPod is the shuffle... It's a new way to listen to music. Not only that, it seems to be the symbol for the digital age itself because, when we go on the internet, really what we're doing is we're shuffling what normally was dealt to us in a pretty rigid hand. When we read news on the internet, we shuffle different publications. When we shuffle our shopping, instead of being physically locked to wherever we do our buying, we could go from one location in the world to somewhere else in a different continent within seconds. To me the shuffle was not only an interesting phenomenon of the iPod itself but it really stood for basically the way we consume media in this age."

What about the shuffle function?

Absut.com iPhone / iPod
 Part of The New York Times Company

iPhone / iPod New to iPhone? Apps

Is iTunes' Shuffle Mode Truly Random?
By Sam Costello, About.com Guide
http://ipod.about.com/od/advanceditunesuse/a/itunes-random.htm

CNET AUStralia

MP3 Players , News , Tunes: Just how random is random?
iTunes: Just how random is random?

By David Braue | March 8, 2007 | 127

http://www.cnet.com.au/itunes-just-how-random-is-random-339274094.htm

howstuffworks :

Adventure Auto Culture Entertainment Home \& Garden

Computer | Electronics
iPod Shuffle Problems: How Random is the iPod Shuffle?

So just how random is the shuffle capability on an iPod Shuffle? Even before the device debuted in 2005, people have wondered about the shuffle function on iPods. Many complain that what they hear from

Apple's Smart Shuffle [2005]

Apple's Smart Shuffle [2005]

You know, we've gotten a lot of people that say our shuffle's not random. Well, it really is random
but sometimes random means you've got two songs from the same artist next to each other. Just happen randomly sometimes.

Apple's Smart Shuffle [2005]

6
And so what we've added is smart shuffle to actually make it less random - if you want.

Even though people will think it's more random, it's actually less random and what it is, in preferences, there it is right there, it says smart shuffle allows you to control how likely you are to hear

\cong Spotify Labs

How to shuffle songs?

Posted on February 28, 2014 by Lukáš Poláček

Like
1.2K people like this. Be the first of your friends.

At Spotify we take user feedback seriously. We noticed some users complaining about our shuffling algorithm playing a few songs from the same artist right after each other. The users were asking "Why isn't your shuffling random?". We responded "Hey! Our shuffling is random!"

So who was right? As it turns out, both we and the users were right but it's a bit more complicated than that. It also tells a nice story about how to interpret users' feedback.

\cong Spotify Labs

Our perspective

Since the Spotify service launched, we used Fisher-Yates shuffle to generate a perfectly random shuffling of a playlist. However, perfectly random means that the following two orders are equally likely to occur (different colors represent different artists):

Gambler's fallacy

At first we didn't understand what the users were trying to tell us by saying that the shuffling is not random, but then we read the comments more carefully and noticed that some people don't want the same artist playing two or three times within a short time period.

USA Currency Coins

- Penny = 1 cent (Abraham Lincoln)

- Nickel $=5$ cents (Thomas Jefferson)

- Dime $=10$ cents (Franklin D. Roosevelt)

- Quarter $=25$ cents
(George Washington)

Thai Coins

randi function

- Generate uniformly distributed pseudorandom integers
- randi(imax) returns a scalar value between 1 and imax.
- randi(imax,m,n) and randi(imax, [m, n]) return an m-by- n matrix containing pseudorandom integer values drawn from the discrete uniform distribution on the interval [1,imax].
- randi(imax) is the same as randi(imax,1).
- randi([imin, imax], . . .) returns an array containing integer values drawn from the discrete uniform distribution on the interval [imin,imax].

randi function: examples

Coin Tosses:

```
>> randi([0,1])
ans =
>> randi([0,1],10,2)
ans =
    1 0
    1 0
    1 0
    1 1
    1 1
    0 0
    1 1
    0
    1 0
    0
    0
```

Dice Rolls

```
>> randi([1,6])
ans =
    5
>> randi([1,6],10,2)
ans =
    5 1
    2 1
    3 3
    3
    6
    4 3
    5 4
    5 2
    2
        5
    5 2
    4 4
```


randi function: examples

Coin Tosses:	```>> S = ['T','H'] S = TH >> S(randi([1,2])) ans = H >> S(randi([1,2],10,2)) ans = TT HH HT TT TT TH HT HH HT```

Coin Tossing: Relative Frequency

$$
\frac{N(A, n)}{n}
$$

If a fair coin is flipped a large number of times, the proportion of heads will tend to get closer to $1 / 2$ as the number of tosses increases.

Coin Tossing: Relative Frequency

close all; clear all;
$N=1 e 3 ;$ \% Number of trials (number of times that the coin is tossed)
$s=r a n d i([0,1], 1, N) ; \%$ Generate a sequence of N Coin Tosses.
\% The results are saved in a row vector s.
NH = cumsum(s); \% Count the number of heads
plot(NH./(1:N),'LineWidth',1.5); grid on \% Plot the relative frequencies

Coin Tossing: Relative Freq. vs. \#H-\#T

If a fair coin is flipped a large number of times, the proportion of heads will tend to get closer to $1 / 2$ as the number of tosses increases.

> This statement does not say that the difference between \# H and \#T will be close to 0 .

Another Experiment

Relative Freq. \#H-\#T

Another Experiment

Relative Freq.
\#H-\#T

Summary:

- Ingredient of Probability Theory:
- Random experiment
- Outcome $\boldsymbol{\omega}$ ——each outcome represent a result from the experiment
- Sample space Ω _collection (set) of all possible outcomes
- Event A collection of outcomes that meets some specifications $(\subset \Omega)$
\square define outcomes of interest from a random experiment
- $P(A)=$ probability of event A
- For a random experiment and a specific event A, when the experiment has been performed, the event may occur or not occur. The probability that it occurs is denoted by $P(A)$.

Summary:

- Q: How do we interpret the value of probability?

What does the value of $P(A)$ tells us about event A ?

- A: "long-run frequency interpretation"
- Repeat the experiment n times (n should be large).
- Count the "fraction of times that A occurs" among these n repetitions.
-This is called the "relative frequency" of event A.
- Law of Large Numbers (LLN)
- As $n \rightarrow \infty$, the relative frequency of event A will converge to $P(A)$.
- When n is not ∞, but large, the fraction should be close to $P(A)$.

